上一頁下一頁
  • 2006 E92 335 LCI尾燈改裝

    2006 E92 335 LCI尾燈改裝

  • 2006 E92 335 LCI尾燈改裝-1

    2006 E92 335 LCI尾燈改裝-1

  • 2006 E92 335 改裝LCI尾燈前

    2006 E92 335 改裝LCI尾燈前

  • E70 X5 尾燈改裝前

    E70 X5 尾燈改裝前

  • E70 X5改裝LCI尾燈

    E70 X5改裝LCI尾燈

  • E70 X5 LCI尾燈近照

    E70 X5 LCI尾燈近照

  • F10 將怠速熄火設定為"常閉"

    F10 將怠速熄火設定為"常閉"

  • F20 - 將怠速熄火設定為記憶上一次熄火前的狀態

    F20 - 將怠速熄火設定為記憶上一次熄火前的狀態

  • 電子時速表

    電子時速表

  • 沒拍成功之X6解DVD限速

    沒拍成功之X6解DVD限速

  • F20 設定怠速熄火記憶

    F20 設定怠速熄火記憶

  • F02 740Li 解DVD速限

    F02 740Li 解DVD速限

  • 胎蝦及溫度顯示畫面

    胎蝦及溫度顯示畫面

  • 美規E92 335設定後照鏡收折

    美規E92 335設定後照鏡收折

  • F20 135i 解DVD速限

    F20 135i 解DVD速限

  • E92 M3 改裝LCI尾燈前

    E92 M3 改裝LCI尾燈前

  • E92 M3 角燈未刪除前

    E92 M3 角燈未刪除前

  • 原廠電腦 ICOM

    原廠電腦 ICOM

  • 擦拭前

    擦拭前

  • 擦拭後

    擦拭後

  • 安裝後縫隙確認

    安裝後縫隙確認

  • E92 M3 LCI尾燈-安裝後

    E92 M3 LCI尾燈-安裝後

  • E92 M3 LCI尾燈-安裝後

    E92 M3 LCI尾燈-安裝後

  • E92 M3 - 刪除角燈

    E92 M3 - 刪除角燈

  • 未編碼前會出現方向燈快閃

    未編碼前會出現方向燈快閃

  • 編碼後方向燈閃爍正常

    編碼後方向燈閃爍正常

  • New 740Li Angel Eye

    New 740Li Angel Eye

  • New 740Li 馬力及扭力

    New 740Li 馬力及扭力

  • IMAG0398-S

    IMAG0398-S

  • Transmission Upgrade

    Transmission Upgrade

  • 2013 台灣圖資升級

    2013 台灣圖資升級

  • 2013 台灣圖資升級

    2013 台灣圖資升級

  • 2013 台灣圖資升級

    2013 台灣圖資升級

  • 2013 台灣圖資升級

    2013 台灣圖資升級

  • E93 改裝M5排檔頭

    E93 改裝M5排檔頭

  • E93 改裝M5排檔頭

    E93 改裝M5排檔頭

  • E93 改裝M5排檔頭

    E93 改裝M5排檔頭

  • F10 USB編碼後-1

    F10 USB編碼後-1

  • F10 USB編碼後-2

    F10 USB編碼後-2

  • F10 USB編碼前

    F10 USB編碼前

  • E92 M3 排檔頭-1

    E92 M3 排檔頭-1

  • E92 M3 排檔頭-2

    E92 M3 排檔頭-2

  • E92 335換LCI 尾燈

    E92 335換LCI 尾燈

  • E92 335換M Sport方向盤

    E92 335換M Sport方向盤

  • E92 335換Performance黑鼻頭

    E92 335換Performance黑鼻頭

  • 設定儀錶板常亮-E92 335

    設定儀錶板常亮-E92 335

  • F11 528i 馬力及扭力表

    F11 528i 馬力及扭力表

  • 胎壓胎溫表

    胎壓胎溫表

  • 胎壓胎溫表

    胎壓胎溫表

  • 胎壓計

    胎壓計

  • LCI換檔撥片改裝

    LCI換檔撥片改裝

  • LCI換檔撥片改裝

    LCI換檔撥片改裝

  • LCI換檔撥片改裝

    LCI換檔撥片改裝

  • LCI換檔撥片改裝

    LCI換檔撥片改裝

  • LCI換檔撥片改裝

    LCI換檔撥片改裝

  • LCI換檔撥片改裝

    LCI換檔撥片改裝

  • F11無高音窗框

    F11無高音窗框

  • F11高音窗框

    F11高音窗框

  • F11無高音窗框

    F11無高音窗框

  • F11高音窗框

    F11高音窗框

  • F07 設定日行燈

    F07 設定日行燈

  • 設定日行燈

    設定日行燈

  • 圖資升級前

    圖資升級前

  • Power Kit加大風扇

    Power Kit加大風扇

  • Power Kit加大冷排

    Power Kit加大冷排

  • Power Kit

    Power Kit

  • Power Kit

    Power Kit

  • Power Kit

    Power Kit

  • 圖資升級後

    圖資升級後

  • Power Kit

    Power Kit

  • 1-S

    1-S

  • 2-S

    2-S

  • 5-S

    5-S

  • D Mode

    D Mode

  • S Mode

    S Mode

  • F20 M135 方向燈 X 6

    F20 M135 方向燈 X 6

  • F02 740Li

    F02 740Li

  • M3 排檔頭-1

    M3 排檔頭-1

  • M3 排檔頭-2

    M3 排檔頭-2

  • M3 排檔頭-3

    M3 排檔頭-3

上一頁下一頁

您尚未登入,將以訪客身份留言。亦可以上方服務帳號登入留言

其他選項
  • 寧靜
    寧靜 2017/10/25 02:20

    請問店家在哪裡?因為美規沒有電折,所以看到版大可以編碼,想請教一下!

  • 葉青峻
    葉青峻 2021/03/10 08:57

    常見的半導體材料有矽、鍺、砷化鎵等
    /
    晶片測試
    晶片處理高度有序化的本質增加了對不同處理步驟之間度量方法的需求。晶片測試度量裝置被用於檢驗晶片仍然完好且沒有被前面的處理步驟損壞。如果If the number of dies—the 積體電路s that will eventually become chips—當一塊晶片測量失敗次數超過一個預先設定的閾值時,晶片將被廢棄而非繼續後續的處理製程。
    /
    晶片測試
    晶片處理高度有序化的本質增加了對不同處理步驟之間度量方法的需求。晶片測試度量裝置被用於檢驗晶片仍然完好且沒有被前面的處理步驟損壞。如果If the number of dies—the 積體電路s that will eventually become chips—當一塊晶片測量失敗次數超過一個預先設定的閾值時,晶片將被廢棄而非繼續後續的處理製程。

    /
    步驟列表

    晶片處理
    濕洗
    平版照相術
    光刻Litho
    離子移植IMP
    蝕刻(干法蝕刻、濕法蝕刻、電漿蝕刻)
    熱處理
    快速熱退火Annel
    熔爐退火
    熱氧化
    化學氣相沉積 (CVD)
    物理氣相沉積 (PVD)
    分子束磊晶 (MBE)
    電化學沉積 (ECD),見電鍍
    化學機械平坦化 (CMP)

    IC Assembly and Testing 封裝測試
    Wafer Testing 晶片測試
    Visual Inspection外觀檢測
    Wafer Probing電性測試
    FrontEnd 封裝前段
    Wafer BackGrinding 晶背研磨
    Wafer Mount晶圓附膜
    Wafer Sawing晶圓切割
    Die attachment上片覆晶
    Wire bonding焊線
    BackEnd 封裝後段
    Molding模壓
    Post Mold Cure後固化
    De-Junk 去節
    Plating 電鍍
    Marking 列印
    Trimform 成形
    Lead Scan 檢腳
    Final Test 終測
    Electrical Test電性測試
    Visual Inspection光學測試
    Baking 烘烤
    /
    有害材料標誌

    許多有毒材料在製造過程中被使用。這些包括:

    有毒元素摻雜物比如砷、硼、銻和磷
    有毒化合物比如砷化三氫、磷化氫和矽烷
    易反應液體、例如過氧化氫、發煙硝酸、硫酸以及氫氟酸

    工人直接暴露在這些有毒物質下是致命的。通常IC製造業高度自動化能幫助降低暴露於這一類物品的風險。
    /
    Device yield

    Device yield or die yield is the number of working chips or dies on a wafer, given in percentage since the number of chips on a wafer (Die per wafer, DPW) can vary depending on the chips' size and the wafer's diameter. Yield degradation is a reduction in yield, which historically was mainly caused by dust particles, however since the 1990s, yield degradation is mainly caused by process variation, the process itself and by the tools used in chip manufacturing, although dust still remains a problem in many older fabs. Dust particles have an increasing effect on yield as feature sizes are shrunk with newer processes. Automation and the use of mini environments inside of production equipment, FOUPs and SMIFs have enabled a reduction in defects caused by dust particles. Device yield must be kept high to reduce the selling price of the working chips since working chips have to pay for those chips that failed, and to reduce the cost of wafer processing. Yield can also be affected by the design and operation of the fab.

    Tight control over contaminants and the production process are necessary to increase yield. Contaminants may be chemical contaminants or be dust particles. "Killer defects" are those caused by dust particles that cause complete failure of the device (such as a transistor). There are also harmless defects. A particle needs to be 1/5 the size of a feature to cause a killer defect. So if a feature is 100 nm across, a particle only needs to be 20 nm across to cause a killer defect. Electrostatic electricity can also affect yield adversely. Chemical contaminants or impurities include heavy metals such as Iron, Copper, Nickel, Zinc, Chromium, Gold, Mercury and Silver, alkali metals such as Sodium, Potassium and Lithium, and elements such as Aluminum, Magnesium, Calcium, Chlorine, Sulfur, Carbon, and Fluorine. It is important for those elements to not remain in contact with the silicon, as they could reduce yield. Chemical mixtures may be used to remove those elements from the silicon; different mixtures are effective against different elements.

    Several models are used to estimate yield. Those are Murphy's model, Poisson's model, the binomial model, Moore's model and Seeds' model. There is no universal model; a model has to be chosen based on actual yield distribution (the location of defective chips) For example, Murphy's model assumes that yield loss occurs more at the edges of the wafer (non-working chips are concentrated on the edges of the wafer), Poisson's model assumes that defective dies are spread relatively evenly across the wafer, and Seeds's model assumes that defective dies are clustered together.[25]

    Smaller dies cost less to produce (since more fit on a wafer, and wafers are processed and priced as a whole), and can help achieve higher yields since smaller dies have a lower chance of having a defect. However, smaller dies require smaller features to achieve the same functions of larger dies or surpass them, and smaller features require reduced process variation and increased purity (reduced contamination) to maintain high yields. Metrology tools are used to inspect the wafers during the production process and predict yield, so wafers predicted to have too many defects may be scrapped to save on processing costs.[26]

相片最新留言

此相簿內的相片目前沒有留言

相簿列表資訊

最新上傳:
2014/01/12
全站分類:
不設分類
本日人氣:
7
累積人氣:
17673

相簿位置